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Abstract

We present in this paper the application of B-P constitutive equations in finite element analysis of high velocity
impact. The impact process carries out in so quick time that the heat-conducting can be neglected and meanwhile, the
functions of temperature in equations need to be replaced by functions of plastic work. The material constants in the
revised equations can be determined by comparison of the one-dimensional calculations with the experiments of
Hopkinson bar. It can be seen from the comparison of the calculation with the experiment of a tungsten alloy projectile
impacting a three-layer plate that the B-P constitutive equations in that the functions of temperature were replaced by
the functions of plastic work can be used to analysis of high velocity impact. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

In recent years, more realistic constitutive equations have been proposed for the combined elastic and
time-dependent inelastic deformation of metals. One class of such equations is referred to as “unified” in
the sense that all inelastic deformations are represented by the same variables. These equations also include
load history-dependent variables to represent certain aspects of the material state, e.g. hardening and
softening. Some of the proposed sets of “unified”” constitutive equations do not require a prescribed yield
criterion and loading/unloading conditions. The B-P constitutive equations proposed by Bodner and
Partom (1975) for elastic—viscoplastic response are of this class and have been adopted in the finite element
calculations of high velocity impact in this paper. For the convenience of calculations the heat conducting
in the impact process was neglected and some parameters versus temperature were superseded by the
functions of plastic work. The material constants in the equations have been determined by comparison of
the one-dimensional calculations with the experiments of Hopkinson bar.
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2. Bodner-Partom equations and its applications

In the Bodner—Partom constitutive equations the total strain rate tensor is considered to be composed of
an elastic part, &; and an inelastic (plastic) part, & at all stages:
&y = & + & (2.1)
According to the Hooke’s law, the stress tensor reads:
Gy = Ay by + 2GE, (2.2)

where / and G are Lame coefficients and J;; is the Kronecker delta symbol tensor.
From the Bodner—Partom law, the second invariant of the plastic strain rate tensor can be given by:
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where Z,, Z; and m are material constants. The parameter Dy corresponds to the limiting strain rate and
this interpretation is inherent in the functional form of Eq. (2.3). The material parameter n controls strain
rate sensitivity and the overall level of the flow stress.

From the plastic flow law and Eq. (2.3), the plastic strain rate tensor can be given by:

& = (D3/1)" s, (2.9)

The Egs. (2.1)~(2.9) can be directly introduced into the finite element code for analysis of high velocity
impact, in which the calculations and integration are performed on an element-by-element and a step-by-
step basis. For each new step the strain rate tensor, ¢; in Eq. (2.1) can be obtained from geometrical re-
lations but the values of the plastic part, a}j at advanced time step must be taken to determine the elastic
part &. Then, the stress rate tensor, 6;; can be given from Eq. (2.2) and the stress tensor can be obtained by
integration:

0 =38;— (P+ Q)o; + ¢;; At (2.10)

where the deviatoric stress tensor S;;, the hydrostatic pressure P and the artificial viscosity Q take the values
of that at advanced step. The artificial viscosity tends to eliminate spurious oscillations which would
otherwise occur for wave propagation problems. This technique was originally proposed by von Neumann
and Richtmyer (1950). It is expressed in terms of linear and quadratic components and is applied only when
the volumetric strain rate éy is negative:

0 = CipCihléy| + C2ph2(éy)”  foréy < 0

2.11
0=0 foréy =0 ( )
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where C and p are the sound velocity and the density of the material respectively and / is the minimum
altitude of the element. Typical values used for the dimensionless coefficients are C; = 0.5 and C3 = 4.0 (see
e.g. Wilkins (1964)). The hydrostatic pressure is dependent on the volumetric strain and the internal energy
in the element. From the complete expression of the Mie-Gruneisen equation it is given by (see e.g. Walsh
et al. (1957)):

r
P=(k1u+kzu2+k3u3)< —7") +TE( + ) (2.12)

where 4 = (Vy/V) — 1, ki, ky and k3 are material-dependent constants and I' is the Gruneisen coefficient. The
specific internal energy, E is obtained from the plastic work done on the element by the various stresses.

The plastic strain rate tensor, af; for new step can be obtained by Egs. (2.3)-(2.9) after the stress tensor is
given by Eq. (2.10).

3. Dimensionless material constants and high velocity impact

The material constants Zy, Z; and m in the Bodner—Partom constitutive equations could become di-
mensionless, and the composition of m/Z, in Eq. (2.7) could be replaced by m, if the stress tensor g;; is
normalized by the static yield stress gy.

In Eq. (2.3) the material parameter n which controls strain rate sensitivity and the overall level of the
flow stress depends on the transient temperature.

According to Batra and Kim (1990) the dimensionless 7 can be expressed as that n = (Oyer/0) + b, where
Omerr and 0 are melting temperature and transient temperature of material respectively and b is a dimen-
sionless constant. Since the material parameter # is a function of transient temperature, for each step of
finite element analysis the heat-conducting calculations which are much costly must be performed. In fact,
the process of the high velocity impact is performed in so quick time that the heat-conducting takes hardly
place, so the process of the high velocity impact can be approximately considered as a no heat-conducting
process for which the heat-conducting calculations can be neglected. Consequently, the dimensionless
material parameter n can be expressed as a function of plastic work, i.e. n = n,E,/(w® + E,) + b, where E, is
the initial specific internal energy of material, which depends on the ambient temperature of the material
and wP is the plastic work done on the element by the various stresses and the dimensionless constant
Ny = Omere/0,, where 0, represents the ambient temperature of the material.

It is noted that the shear modulus G in Eq. (2.2) varies with the temperature of the material. Batra and
Kim (1990) have given the modulus G of carbon steel versus temperature 6 shown in Fig. 1, where G and 0
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Fig. 1. Shear modulus G versus 6.
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are normalized by the modulus G, measured at room temperature and by the melting temperature 0,
respectively. In fact this relation of G/Gy to 0/0y is approximately found for many metals and has been
used for armor steel, tungsten alloy and aluminium alloy in this paper. Because the heat-conducting cal-
culations have been neglected as indicated above, the dimensionless variable 6/6,,; is superseded in this
paper by the dimensionless variable of plastic work (WP + E,)/(n,E,).

4. Determination of dimensionless material constants

In order to determine the dimensionless material constants Z,, Z; and m in the Bodner—Partom con-
stitute equations, the experimental strain—stress data of the material at various strain rate need first to be
measured. Then the values of these parameters can be sought by making comparison between calculated
results and experimental data.

The Hopkinson (or Kolsky) bar that has found a wide acceptance as the instrument for intermediate
strain testing (10>-10* s—!) was used in this paper to measure the strain—stress data of materials. Here a small
cylindrical specimen was sandwiched between two long loading bars. Strain gauges on the input bar recorded
the incoming impact wave ¢ (¢) and the returning reflected wave &g () from the specimen while strain gauges
on the output bar recorded stress wave er(¢) transmitted through the specimen. From these three elastic
signal the dynamic stress—strain data for the specimen might be derived (see e.g. Kolsky (1949)):

Ay

o(t) = Eo~ ex(1) (4.1)
&(1) = % /0 t[sl(t) — er(t) — ex(¢)]dt (4.2)

where Ej, Cy and A, represent the elastic modulus, sound velocity and cross-sectional area of the bar re-
spectively and 4 and L represent the cross-sectional area and length of the specimen respectively. It should
be noted that in order to smooth the strain-stress data that were always oscillatory more or less, in our
paper the average value of 4 nearby points has been taken as the value of each point.

For advanced given constants of the material and the boundary conditions in the Hopkinson bar ex-
periment, the strain—stress relationship can also be obtained by the one-dimensional numerical calculations,
in which the control equations with inclusion of the one-dimensional Bodner-Partom equations read:

Ux1 = Vg, Uy = 0 (43)
ov

s = e 4.4
8x ax 8x + gx ( )
G = 2(1 + v)G(WP)& 4.5)
. 2DO Oy n

& === " exp[-0.5(32%/52)"] (4.6)
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n= STt b=0 (4.7)
Z=27i+ (Zy— Z)) exp(mwP), WP =g, (4.8)

where v, represents the axial displacement velocity, but v,; and v,, represent the displacement velocity on
each contact surface respectively and the other symbols is as mentioned above. The numerical calculations
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can be started from Eq. (4.3) and the strain rate ¢, can be calculated from geometrical Eq. (4.4) and the
elastic strain rate & can be obtained by taking the plastic part, & at advanced time. Consequently, the stress
o, can be calculated by integrating Eq. (4.5), in which the value of the plastic work wP at advanced time is
also taken and then the plastic strain rate ¢° at this stage of the deformation process can be obtained from
Eq. (4.6).

Through cycling calculations the material stress—strain relationship can be obtained, but in general the
first calculations could not bear comparison with the experimental results and the material constants Z,, Z;
and m need to be adjusted and the calculations need to be renewed until the calculated stress—strain curves
close to the experimental curves at various strain rate.

In this paper two sets of experiments for armor steel, tungsten alloy and aluminium alloy were per-
formed to determine their constants Z;, Z; and m respectively in the Bodner-Partom constitutive equa-
tions. One set of experiments was performed with lower strain rate and another set with higher strain rate.
By repeated comparison of the numerical calculations with the results of Hopkinson bar experiment, the
dimensionless constants Z,, Z; and m for armor steel, tungsten alloy and aluminium alloy have been de-
termined respectively and are shown in Table 1, where Df)l) and D(()z) are corresponding to lower strain rate
and higher strain rate respectively. It should be noted that D(()l) and D(()Z) are large compared with experi-
mental strain rate.

Table 2 illustrates the material static mechanical parameters at room temperature, that have been used
for calculations. Figs. 2-4 show the plots of the axial compressive stress versus strain for armor steel,
tungsten alloy and aluminium alloy respectively. It can be seen from Figs. 24 that the result of calculations
using the material constants in Table 1 is in good agreement with the corresponding result of experiments.

5. Calculation example

The high velocity impact problem that a tungsten alloy projectile penetrates into a three-layer plate at
initial velocity 1560 m s~ was solved by incorporating the unified elastic—viscoplastic constitutive equations
of Bodner—Partom into the finite element code. The length of the projectile was 93 mm and its radius was 3
mm. The first and the third layer of the plate were armor steel which thickness were 21 and 50 mm re-
spectively, and the second layer of the plate was aluminium alloy which thickness was 26 mm. The material
constants Z,, Z; and m used in constitutive equations were chosen as shown in Table 1 and the other static
mechanical parameters were as shown in Table 2.

Table 1

The constants and D, for armor steel, tungsten alloy and aluminium alloy
Material Dél) (s7h D (s Zy Z m
Armor steel 2.5x 103 5.0 x 10 0.81 1.08 8.5
Tungsten alloy 1.5 x 103 45x 103 0.78 1.12 8.5
Aluminium alloy 6.8 x 107 2.5 x 10° 0.75 1.28 1.5

Table 2

The static mechanical parameters of material at room temperature
Material p (kgm™) Gy (MPa) v ay (MPa) E, Jm™)
Armor steel 7.8 x 10° 7.7 x 10* 0.3 9.5 x 10% 8.24 x 108
Tungsten alloy 17.8 x 10° 1.5x 10° 0.2 8.5 x 107 6.04 x 108

Aluminium alloy 2.7x 10 2.71 x 10* 0.33 4.3 x 10% 4.20 x 108
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Fig. 2. Plots of stress versus strain for armor steel.
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Fig. 3. Plots of stress versus strain for tungsten alloy.

It is necessary to note that the actual strain rate in the penetrating process is hardly measured, therefore
the parameter Dy in the constitutive equations was chosen only by trial calculations. In this paper the trial
calculations were performed in the assessed range of 10°s~! according to Zukas et al. (1982), Swegle and
Grady (1985), Anderson and Walker (1991) and the parameter D, for each material was chosen as shown in
Table 3.

In this computations the eroding interface algorithm proposed by Johnson and Stryk (1987) has been
used and the tungsten alloy element was assumed to fail completely when its equivalent plastic strain ar-
rived at 0.12, but the armor steel and the aluminium alloy element was assumed to fail at 0.28 and 0.21
respectively, where the failure criterion was slightly larger than the material elongation.

As the computational results, when the momentum of the projectile reduced to zero its penetrating depth
and its residual length were 84 and 18 mm respectively which were in good agreement with that of the
experiment. The final profiles of the calculation and the experiment are shown in Figs. 5 and 6 respectively.
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Fig. 4. Plots of stress versus strain for aluminium alloy.
Table 3
The parameter D, for each material
Material Dy 571
Armor steel 6.80 x 10°
Tungsten alloy 6.20 x 10°
Aluminium alloy 6.50 x 10°
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Fig. 5. The result of the calculation.

6. Conclusions

The Bodner-Partom elastic-viscoplastic constitutive equations could been applied to finite element
calculations of high velocity impact. The impact process can be approximately considered as a no
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Fig. 6. The result of the experiment.

heat-conducting process and the parameter n and G in the equations are thence considered as the function
of plastic work rather than the function of temperature. The dimensionless constants Z,, Z; and m of
material in the equations can be determined by comparison of the one-dimensional calculations with the
experiments of Hopkinson bar, but the determination of parameter D, needs making trial calculations. In
this paper, the result of calculation that a tungsten alloy projectile penetrates a three layer plate is in good
agreement with the result of corresponding experiment.
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